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Abstract 

A topology is introduced in a logic ~ using the set of pure states of ..oe. It is shown that 5e, 
equipped with this topology, under suitable conditions, determines the division ring 
R, C or Q. With the continuity of the antiautomorphism of the division ring added, it is 
shown that these conditions are necessary and sufficient for the projective logic s to be 
isomorphic with the projective logic of the projections in a Hilbert space over [~, C or Q. 

1. Introduction 

In  the f ramework of  the axiomatic approach to the foundat ions o f  
quan tum mechanics which is known as the ' quan tum logic approach ' ,  one 
meets with the problem o f  the conditions under  which a quantum logic 
admits a 'hilbertian representation' .  In this connect ion the main result is the 
Piron theorem (Piron, 1964), which we quote in the formulat ion given by 
Varadarajan (1968): 

'Let  5r be any logic. Then necessary and sufficient condit ion that  &o be 
isomorphic to the logic o f  all closed linear manifolds of  a separable 
Hilbert space over the division ring D (which is one o f  R, the real field, C, 
the complex field, or  Q, the quaternion division ring) is that  L a be a 
projective logic associated with D and have the property that every family 
of  mutual ly or thogonal  points o f  s  must  be countable ' .  
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In Section 2 we will see what is meant by a logic associated with D (R, C 
or Q). To introduce the question we examine in this paper, we point out 
that the conditions for a logic to be associated with ~ (~, C or Q) - - tha t  is, 
the conditions under which a logic leads to a quantum mechanics over the 
real field, the complex field or the quaternion division r ing--are  left un- 
settled. As Varadarajan says, 'this is a classical question and is intimately 
connected with the topologies on a geometry'. 

In this paper we introduce a topology in a logic, which on one side is 
interesting f rom the physical point of  view, and on the other allows us to 
say that the division ring associated with the logic is really ~, C or Q. 

In Section 2 we recall some useful definitions contained in Varadarajan's 
book. In Section 3 we study some topological properties of  the lattice of  the 
projections in a separable Hilbert space over R, C or Q. In Section 4 we 
introduce in a logic the ' topology of states', and in Section 5 we examine the 
conditions under which a logic with the topology of states determines the 
division ring R, C or Q. 

The mathematical tools that one must know to read the paper are 
collected in the Appendix, in which will be found all the definitions and 
notations not given in the text. 

2. Basic Concepts 

(a) A logic is a lattice with 0 and I, a-complete, ortho-complemented and 
weakly modular. 

(b) An observable associated with a logic ~ is a mapping e: B(R) -+ 5f 
[where B(N) is the a-algebra of  Borel sets of the real line] such that: 

(1) a(~b) = O, ~(~) = I;  
(2) E, F e B(N), E n F = q~ ~ a(E) < (e(F)) • 
(3) {E,},=1,2 . . . .  c B ( R ) ,  E, nE~=(~ f o r i # j - + ~ ( U E . ) = V ~ ( E . )  

I f  a is an observable a n d f a  BoreI real function on ~ we define the observable 
f o  ~ as the mapping given by ( f  o ~)(E) =: ~(f-~(E)) V E ~ B(R) 

(c) I f  (9 is the set of all observables assodated with a logic s and ~ is the 
set of all the probability distributions on B(R), a state function of 5r is a 
mapping p: (9 -+ zc such that ( p ( f  o a))(E) = (p(~))(f-l(E)), V E ~ B(~) 
for every ~ E (9 and every Borel real f unc t i on fon  R. 

(d) A state associated with a logic s is a mapping s: ~ -+ R such that: 

(1) 0 ~< s(a) ~< 1, V a ~ ;  
(2) s(0) = 0, sO) = 1 ; 
(3) {a,},=1.2 ... .  c ~o, ai < a j"  for i r  ~ s(V a,) = ~. s(a,). 

n 

It  can be shown (Varadarajan, 1968, Theorem 6.5) that, given a state s, for 
every observable e e (9, (pS(c0)(E) =: s(e(E)) defines a probability distribu- 
tion on B(R) and that the mapping e-+pS(e) is a state function of ~ .  
Conversely, given a state function p there exists one and only one state s 
such that, for every ~ e 0, (p(c0)(E) = s(~(E)),V E e B(~). 
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A state s is called a pure state if  s = tsl + (1 - t)s2 with 0 < t ~ 1 and 
S1, S 2 states, implies s~ = s2 = s. 

In  his definition of  a state Jauch (1968) requires, besides conditions 
(1), (2) and (3), the following ones also: 

(4) s(ai) = 1 for  every i belonging to an at mos t  countable  set o f  indices 
implies s(^ ai) = 1 ; 

(5) the set o f  states is separate. 

In  the following we shall call 50 the set of  all states of  ~r satisfying also 
(4) and (5) and ~ the set o f  all states of  50 which are pure. Condit ions (4) 
and (5) are convenient  f rom the point  o f  view of  the physical interpretat ion;  
however  their omission would not  cause us any serious mathemat ica l  
difficulty. 

(e) A projective logic is a logic ~ such that :  

(1) ~ is a tomic;  
(2) if  a e ~ ,  a r 0 is the lattice union of  a finite number  of  a toms (such 

an a is called afinite element of  ~r then 2,r is a geometry;  
(3) i f a  ~ ~o, a r O, a r  a n d p  is an a t o m  o f ~ ,  then there exist in ~ two 

a toms q and r such that  q ~< a, r ~< a • p ~< q v r;  
(4) there exists in ~r a finite element a such that  dimA~ ~> 4 

Since for  every finite element a o f ~ ,  A~ [0,a] is a geometry,  we can define 
dim(a) for  each finite element a setting dim(a)  =: d im A ~ [0,a]. Obviously,  
for  a po in tp ,  d im(p)  = 1 ; a finite element a with dim(a) = 2 will be called a 
line of  A ~ a finite a with dim(a) = 3 will be called a plane of  A ~ and so on. 

The  lattice A ~  of  all the projections of  a Hi lber t  space over  D 
(~,  C or Q) with dim ~/'  >~ 4 is a projective logic. The  finite elements of  
A~ are the projections of  finite rank;  obviously,  the a toms are the 
monodimens iona l  projections, the lines are the bidimensional  projections 
and the planes are the t r idimensional  projections. 

N o w  let V be a linear space over  a division ring t( with dim V ~> 4, 0 an 
involutive an t i a tomorph i sm of  ~ ,  and ( . , . )  a definite symmetr ic  0-bilinear 
fo rm on VxV. For  every subset M of  V we define M *  as 

M *  =: {x ~ Vl @, x )  = 0, V /2~M} 

Obviously  M *  is a linear manifold  of  V. We will say tha t  a linear manifold  
N of  Vis  closed relative to ( . , . ) ,  or  ( . , . ) -c losed,  i f N  = N**.  Moreover  we 
will say that  the pair  (V, ( . ,  .)) is hi lbert ian if, for  every ( . , . ) -c losed l inear 
manifo ld  N of  V, V ~ N + N*.  

Then  the following theorem can be proved  (Varadarajan,  1968, Theorem 
7.40: 

'Le t  N be a division ring, V a linear space over  ~ with 4 ~< dim V, 0 an 
involutive an t i au tomorph i sm of  N and ( . , . )  a definite symmetr ic  
O-bilinear fo rm on VxV. Let ~(V,(. , .>) be the set o f  all <. , . )-closed 
linear manifolds  of  V partially ordered under  inclusion. I f  (V, ( . , . ) )  is 



14 R. CIRELLI AND P,  COTTA-RAMUSINO 

hilbertian then ~(V, (. ,.)) is a complete projective logic, and for any 
collection {Ms} of (. ,.)-closed linear manifolds of V the lattice opera- 
tions in 5e(V, (., .)) are given by 

V {Ms} = (U Ms)**, A {Ms} = f~ M s 
.i j j 

Conversely, let ~ be any complete projective logic. Then there 
exists a division ring K, an involutive antiautomorphism 0 of ~ a 
vector space V over K and a definite symmetric 0-bilinear form <.,.) 
on VxV such that (V, ( . , .))  is hilbertian and ~e is isomorphic to 
~e(V, (.,.)). '  

The division ring ~A of the second part of the theorem just quoted is 
uniquely determinedby 5Y up to isomorphism. If  this ring ~; is one of R, C or 
Q, the antiautomorphism 0 is uniquely determined also, and is bound to be 
the identity or the canonical conjugation in the case of R or Q, respectively, 
while it does not need to be the complex conjugation in the case of C. If the 
division ring K results in D (E, C or Q) and, in the case of C, the anti- 
automorphism 0 results in the complex conjugation, then the projective 
logic ~ is said to be associated with D. 

So we have a complete understanding of the Piron theorem quoted in the 
Introduction. 

The question is now to ascertain under which conditions a projective 
logic 5r is really associated with D (~, C or Q). 

In the following sections we shall find necessary and sufficient conditions 
under which a complete projective logic determines R, C or Q, 

3. The Weak Operator Topology On &o(~, D) 

Let ~(,r D) be the lattice of the projections of a separable Hilbert 
space over the division ring D (•, C or Q) with dim ~ ~> 4. As we have noted 
in Section 2, s  D) is a projective logic. 

We consider on ~(~r169 the topology induced by the weak operator 
topology of the algebra M(~)  of all bounded operators on ~ .  In this way 
~e(~ ,  D) is a metrisable second countable apace (Dixmier, 1969). 

Theorem 3.1. Let Q be a projection of finite rank. Then the geometry 
s Q] is a compact subset of ~e(Jt ~, D). 

Proof. Since ~[0,  Q] is a subset of ~(~4 ~) (the unit ball of ~(~/f)) and 
M~(~f) is a compact metrisable space in the induced weak operator topology 
(Dixmier, 1969), it is enough to show that 5e[0, Q] is sequentially 
closed in ~l(~g). Let {P,} c 5r Q] and 

w 
P. - + A  

Then A is bounded and 
p +  w A+ 
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so that A = A +. Moreover, for every x ~ ~ff, 
N 

l iP. xl[ = = E (P.x,u=)(uk, P.x)  
k=l 

where {Uk)k=~ ..... N is a complete orthonormal system of R o (the range of Q) 
and so 

N 
limHP,,x~ 2 =  ~ l im(P,x ,  uk)(uk, P ,x)  = HAxl[ z 
n - ~  k=l  n~oO 

thus ([5], V.1.2) 

liP, x -  Ax]l > 0 
n--> oo 

for every x s ;/f, that is 
s 

P,  - + A  
But if 

8 

Pn -+ A 
then 

s A 2  p z 

so that A = A z. Finally 

( P . x , x ) < ( Q x ,  x) ~ l im(P,x ,x)<~(Qx,  x) ~ (Ax, x)<~(Qx, x) 

that is, A ~ ~e[0, Q]. 

Theorem 3.2. Let I be any line of  ~(-~r D). Then the set of  all points of I, 
but one arbitrarily chosen, is a connected set. 

Proof. Let P be a bidimensional projection, Qo a projection such that 
Qo < P, Qo # P, Qo # 0 ,  and ~ defined as follows: 

5~ {Q ~ ~(J-C, D)IQ <~ P, Q # P, Q # O, Q # Qo} 

We want to prove that 5 D is a connected set. The set ~ of  all vectors of  
which belong to Rp but not to R o is either connected or (in the case D = R) 
the union of two connected subset ~1 and ~2. The mapping x -~ Px, where 
x ~ ~ (or ~ )  and Px is the projection on the subspace generated by Xis  a 
surjective continuous mapping from ~ (or ~ )  onto 5~ The surjectivity is 
immediate; for the continuity we note that, if{x,} is a sequence in ~ (or ~ )  
such that Hx, - xH -+ 0 with x ~ ~ then, for every y~z ~ ~/f 

1 1 
(P~.y, z) = ~ (y, x.) (x., z) -+ ~ (y, x) (x, z) = (Pxy, z) 

that is 
,w  

Px-+Px 
The assertion follows from the fact that connectedness is invariant under 
continuity. 
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We want now to prove that in any plane of 5 r  D3) the intersection 
point of two lines is a continuous function of the two lines and that the 
union line of  the two points is a continuous function of the two points. 
For  each x ~ ~ ,  P~ will mean the projection on the subspace generated by x. 

Lemma 3.3. Let {x.) be a sequence of normalised vectors in ~ and x a 
normalised vector in ~ .  

iff I (x ,x . )?  -+  1. 

Proof. (a) Necessity. From 

we have, for every 
y = z = x  

Px. -+ Px 

w 
P x - + P x  

y , z  ~ ~ (y ,x . ) (x . , z )  --~ (y ,x ) (x , z ) ;  hence, setting 

I(x,x.)P -+ I (x ,x ) ?=  1 

(b) Sufficiency. We choose {Yt} such that {x, yl ,y2 .... } is a complete 
orthonormal set in ~ .  Then 

l(xo, x )?  + E l(x.,y,)l 2 = 1 
i 

so that 

implies 

](x.,x)] 2 > 1 
n~ O0 

E I(x.,y,)l ~ > o 
[ W+ oo 

Now, for every z e 

(z, x.) = (z, x) (x, x.) + E (z, y,) (y,, x.) 
i 

then 

][(z, x.)l - [(z, x) (x, x.)ll < ](z, x.) - (z, x) (x, x.)l = 
\ 1 / 2  / \ 1 / 2  

= .<(: t,: L(, x.>t') -< 

114 l(y,,x.)l ~ .~d  o 

thus 

1(2,x.)l-+ 1(2,x)l, v z ~ J r  
whence 

(ex.  z, z) = (z, x . )  (x. ,  z) = [(z, x . ) ?  -+  l(z, x) l ~ = (ex z, z) 

Using the polarisation principle, then we have 

p x W p x  
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R e m a r k  3.1. The polarisation principle for (Ax ,  y)  where A eN(J/d) is 
very well known if 2r is over N or C: 

= R, A hermitian: 

4(Ax ,  y)  = ( A ( x  + y ) , x  + y)  - ( A ( x  - y ) , x - -  y)  
D = C :  

4(Xx ,  y)  = ( X ( x  + y),  x + y)  - ( A ( x  - y) ,  x - y)  + i ( X ( x  + iy), x + iy) 

- -  i ( a ( x  - -  i y ) ,  x - -  iy) 
for D = Q it reads 

4(Ax ,  y)  = ( A ( x  + y),  x + y)  - ( A ( x  - y),  x - y)  

+ k ( A ( x  + k  Y), x + k  Y) - k ( A ( x - k  y), x - k  y) 

+ jz(A(x + j2 Y), x + J2Y) --jE(A(x -J2Y),  x --jzY) 

+ j a ( A ( x  +jaY), x +jaY) - j a ( A ( x  -JAY), x - jaY)  

Let now ~/Ya be any tridimensional subspace of ~4 ~. In Theorems 3.4 and 
3.5 we consider only projections whose range is contained in ~~ 

Theorem 3.4. Let {P.} and {Q.} be two sequences of  monodimensionat 
projections. If  

P.  W p  

W 

O. --> O 

where P and Q are monodimensional projections and P # Q, then 

& , v Q .  > P v Q  
1l-9 00 

Proof.  Since P r Q, for sufficiently large n it is P.  r Q.. For each such 
large n let z. be a normalised vector of ~4~3 orthogonal to R~. vo. and let 
x and y be two normalised vectors belonging to R~ and R e respectively. 
We can write: 

x = (x , x . ) x .  + ( x , x . •  • + (x l , z . ) z .  
y = (y ,y . )y .  + ( y , y . •  + (y, z . )z .  

where x . ( y . )  is a normalised vector of R t , ( R a . )  and x1/'(y.') a normalised 
vector of R~.vo .  such that { x , , ( y . ) , x . ' ( y . ' ) , z . }  is an orthonormal set in 
Jr3- Since 

I(x, xo)12 + I(x, x1/• + I(x,z.)12 = 1 
[(y,y~)! 2 + [ (y , y . •  z + [(y,z.)] z = 1 

and 
I(x,x,,)[ 2 ~ 1, I(y,y.)[ 2 ~ 1 

we have ](x,z.)] z ~ O. 
Let now z be a normatised vector of ~ a  orthogonal to Rl.vO. We have 

z .  = c~. x + B. Y + (z., z )z  
2 
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where 

an 

Obviously,  
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(z., x) - (z., y) (y, x) (z., y) - (z., x) (x, y) 
1 - I ( x , y ) l  2 ' / / " -  1 - [ ( x , Y ) l  2 

2 2 
[~,,l~ 1 - [ ( x , y ) l  2' IP.I ~ 1 - I ( x , y ) l  2 

and thus f rom 

1 = (z., z.) = ~.(x,  z.)  + /~ . (y ,  z.) + (z., z) (z, z.) 

we see tha t  I(x,z,) I --> 0 and l(y,z,,)] --> 0 imply I(z,z,)[ 2 -+ 1, that  is 

w 
P z - + P z  

But 

therefore, 
P ,  v Q, = {ov3 - P , .  and P v Q = {ova - P ~  

W 
P, ,v  Q, ---> P v  Q 

Theorem 3.5. Let {P,} and {Q,} be two sequences of  bidimensional  
projections. I f  

w p W>p, Q,--> Q 

where P and Q are bidimensional  projections and P r Q, then 

W 
P , , ^ Q , , - + P ^ Q  

Proof. F r o m  Theorem 3.4 we have 

W 
(~ ova - P.)  v (~ ova - Q.) -+ (~ ovs - P )  v (~ ova - Q) = ~ ova - P A Q 

but  
P, ^ Q,,=*ovs- [({ov3 - P . )  v (*ova-  Q,)] 

hence 
P , , ^ Q , - + P ^ Q  

Remark. s  •) is not a topological  lattice. Indeed, given any bi- 
dimensional  subspace f f 2  of  f f  we have 

W 
X,  X n ~ J { ' 2 ,  X n -->" X :=> Px, ,  "--> P x  

I f  x .  -~ x V., then Px. v Px = {ov2, Vn; therefore, Px v P~ does not  
converge to P~ v P~ = P~. 

4. The 'Topology of States' 

Let s be a logic and ~ the set of  all pure states of  s We introduce in s 
a topology  which we call the ' topo logy  of  states' .  
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Given a net {a~}~a in ~ we say that {a~) 'converges' to a E s if, for  every 
s E ~ ,  the net {s(a~)} converges to s(a) in the usual topology of  R. 

This 'convergence' satisfies conditions (nl)-(n4) quoted in Appendix D. 
In fact: 

(n0 a~ = a Vc~ ~ A :> s(a~) = s(a) V~ ~ A, Vs ~ ~ ~ s(a~) 
s(a) Vs e ~ and thus, by definition, a,  -+ a; 

(n2) if {aa)B~ B is a subnet of  {a,),~A, {s(aa)) is a subnet of  {s(a,)) for every 
s ~ ~ ;  if a~ ~ a, s(a~) ~ s(a~) Vs ~ ~ ,  thus the subnet {s(aB) ) 
converges to s(a) for every s ~ ~ and therefore, by definition, 
aa -+ a; 

(n3) if a ,  ++ a there exists an g e ~ such that g(a,) ++ g(a); therefore there 
exists a subnet (ga) of the net (g(a~)) no subnet of  which converges to 
g(a); we can now find a subnet {aa) of  {a,} such that g(aa) =ga;  
obviously, aa ++ a and no subnet of  {aa) can converge to a; 

(rig) if {a,),~a converges to a and, for each ~ ~ A, {a,,a)a~B~ converges to 
a,, for every s ~ ,  s ( a , ) - + s ( a )  and s(a, .a)-+ s(a,);  but the con- 
verging nets in E satisfy the law of iterated limits, thus s(a~.o~,)) -+ 
s(a) Vs ~ ~ ;  therefore, by definition a~,,o(,) -+ a. 

We can now introduce a topology in 5e, the convergence relative to which 
is equivalent to the above convergence, taking as the family of closed sets 
the family of  the subsets S of LP such that: (x~} c S and x~ ~ x imply x ~ S. 

This topology will be called the ' topology of states'. 
In a logic ~ the topology of states is a T~-topology iffthe set of  pure states 

is separating. In fact, suppose ~ is separating and consider the net {a~}~a 
with a~ = a, V0~ ~ A, then a, -+ a and a, -+ b imply s(a) = s(b) Vs ~ ~ ,  
whence a = b. Conversely, suppose ~ is not separating; then there exist 
two distinct elements a and b of  s such that s(a) = s(b) Vs E ~ ,  hence the 
net {a~),~A with a, = a ~'0~ ~ A converges to a and b, and therefore a is not 
closed. 

Furthermore, it must be remarked that the topology of states is a 
Hausdorff  topology if it is a Tl-topology. For if a, -+ a and a~ ~ b then 
s(a) = s(b) Vs ~ ~ ,  and this implies a = b i f ~  is separating. 

I t  is obvious that once the topology of states is introduced in La every pure 
state is a continuous mapping. We can prove also that the orthocomple- 
mentation is a continuous mapping. Since, for every a ~ So and every 
s ~ ~ ,  s(a) + s(d-)  = 1, from a~ ~ a we have Vs ~ ~ s(a~') ~ s (a ' ) ,  and 
therefore a~" -+ a ' .  

An interesting remark is that if ~a is a 'classical logic' (Varadarajan, 1968, 
Chapter 1), s with the topology of states is a topological lattice. The logic 
s of  a classical system is the a-algebra of  Borel subsets M of the phase 
space f2 of  the system and the set of  pure states of  5(' is the set {Z~,, o9 ~ f2} 
where, for each M ~ ~ ,  

{~ i f o ) ~ M  
Z,o(M) =: if ~o ~ M 
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Now, suppose M, --> M and N, -+ N; then we can find for each co ~ f2 
and C~o e A such that c~ 1> eo implies 

{~ if c o r M  
Zo,(M~) = if co q~ M 

and 

)C,.(N.) = if co q~ N 

Therefore, for e ~> C~o, )~(M~ ^ N.) = 1 iff co e M ^ N and Zo,(M~ ^ N.) iff 
co(~MAN.  

This means that Vco ~ f2, %o~(M~ A N,) -+ z~(M A N)  and thus, by defini- 
tion, M, A N~ ~ M A N. Moreover, 

M ~ v N ~ = ( M ~  • AN~ • ~ (M • 1 7 7  •  

Theorem 4.1. In the logic So(~ ,  D) the topology of states is the topology 
induced by the weak operator topology of N(ouf). 

Proof For each normalised vector u ~ J/g let us consider the mapping 
su: ~(~'t ~ D) ~ R defined by su(P) =: IleuIl 2. From the Gleason theorem 
(Varadarajan, 1968, Theorem 7.23) we know that the mapping s. is a pure 
state of the logic ~e(3r D) for every normalised u ~ a~' and that for every 
pure state s of ~ (~ t  ~ D) there exists a normalised u ~ 24 ~ such that s = s.. 
Therefore, if {P~} is a net in ~ ( ~ ,  D), P~ -+ P ~ ~ ( ~ ,  D) means tlP~ul[ z -+ 
IlPu[[ 2 for every normalised u e ~ .  But this is equivalent to (P~x,x)-+ 
(Px, x) Vx  ~ 2If, which is equivalent to (P,x,y)  -+ (Px, y) Vx, y E ~ ,  by 
the polarisation principle. 

Remark 4.1. While a 'classical logic' with the topology of states is a 
topological lattice, a 'quantum logic' with the topology of states is not. 

Remark 4.2. The topology of states has a clear physical meaning: two 
'propositions' are 'near' if the probability of the result--yes--is almost 
the same for the two propositions in all the pure states; that is, if  the two 
propositions give nearly the same information on the physical system. 

5. Conditions under which a Logic with the Topology of States 
Determines ~, C or Q 

Let &o be a projective logic such that every family of mutually orthogonal 
points is at most countable. We assume that ~ satisfies the following 
topological conditions: 

(Lr in ~ is introduced the topology of states, and s(a) = s(b) Vs ~ 
implies a = b (that is, ~ is separating); 

(La2) for every finite element a of ~ ,  5e [0, a] is a compact subset of ~e with 
the topology of states; 
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(~3)  ~ with the topology of states is second countable; 
(s for every line l of  ~e with the topology of states the set of all points 

of / ,  but one arbitrarily chosen, is a connected set; 
(L, es) no plane of Se is trivial; for every plane u of 5e with the topology 

of states the intersection point of two lines in u is a continuous 
function of the two lines and the union line of two points in u is a 
continuous function of the two points. 

Obviously, all these topological conditions for 5r are conditions on the 
set of pure states of s From the condition (s it follows immediately 
that s with the topology of states results in a Hausdorff space. 

Moreover, as we can see from Theorem 4.1 and from Section 3, the 
projective logic 5 e ( ~ ,  ~)  of all the projections in a separable Hilbert space 

over D (~, C or Q) with the weak operator topology, satisfies all the above 
conditions. 

Theorem 5.1. ~ is isomorphic to the projective logic ~e(V,( . , . ))  of all 
( . , . )-closed linear manifolds of V, where V i s a  vector space over D (~, C 
or Q). 

Proof. let .LP be the generalised geometry consisting of all the finite 
elements of ~e. Following Varadarajan's notations, for every line l of  ~ we 
denote by f12(l) the set of all the projectivities of [ onto itself which can be 
written as a product of  two perspectivities. 

Let us choose arbitrarily a plane u in ~ and a line l in u. 
On l we fix three distinct points 0 ('origin'), E ('unit point'), W ('point at 

infinity'). 
Let D be the set of all the points of/,  but IV. We introduce in D the follow- 

ing two operations: 
.4 + B=: pB A 

A . B = : ( q o A  i f B ~ 0  
i fB  = 0 

where p~ is the unique special projectivity of fl:(l) with W as its fixed point 
and such thatpn O = B and q~ is the unique general projectivity of f12(l) with 
O and W as its first and second fixed points and such that qnE = B (see 
Varadarajan, 1968, Chapter 2). With these operations 13 becomes a division 
ring (in general not commutative) with O and E as its zero and unit 
respectively. 

The generalised geometry ~ results in it being isomorphic to the general- 
ised geometry of all the finite dimensional linear manifolds of a linear space 
V over a division ring which is isomorphic to the division ring D constructed 
as above, no matter how the plane u of ~9q, the line l in u and the three points 
O, E, Win l are chosen (Varadarajan, 1968, Chapter 5). 

We want now to prove that D is a topological division ring which is locally 
compact, second countable and connected. 
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(a) • is a topological division ring. Given u, I, O, E, W as above, let 
n r l and r r I be two distinct lines lying on u and containing W, and let X 
be a point on r distinct from W (Fig. 1) (we recall that there exists at least 
three distinct lines containing a given point). 

l 
c 

- 

FIo. 1. 

For each point B of I let Y(B) =: (((X v O) ^ n) v B) ^ r and for each 
point A of I distinct from W let Z(A) =: (X v A) ^ n. Since Z(A) and Y(B) 
are continuous functions of  A and B respectively, f (A,B)=: (Z(A)v  
Y(B)) A l is a continuous function of the pair (A,B). But f(A, B)= PBA; 
therefore, A + B is a continuous function of (A, B). 

r I 

I 

F I G .  2,  

Let now n' r l be a line in u containing W, r '  # l aline on u containing O, 
and let X '  be a point on r '  distinct from O (Fig. 2). For each point B of l let 
Y'(B) =: (((X' v E) ^ n') v B) ^ r' and for each point A of l let Z'(A) =: 
(X' v A) ^ n'. Since Z'(A) and Y'(B) are continuous functions of  A and B 



QUANTUM LOGIC AND LOGIC OF PROJECTIONS IN HILBERT SPACE 23  

respectively, g(A,B)=: (Z'(A) v Y'(B)) ^ l is a continuous function of the 
pair (A, B). But 

g(A'B)={q; A ifBifB~0= 0 

therefore A. B is a continuous function of (A, B). 
(b) D is second countable. This follows immediately from (s since 

second countability is a hereditary property. 
(c) • is connected. This follows immediately from (s 
(d) ~ is locally compact. By condition (oo-w2) ~[0 , l ]  is compact. The set 

C =: {0,/, W}, is closed because we deal with a Tl-topology. Now, the 
division ring D is the complementary set of C in s l] and 5e is a Hausdorff 
space; therefore D is locally compact. 

It is well known that a second countable connected and locally compact 
division ring is isomorphic and homeomorphic to one of the topological 
division rings R,  C or @ (Pontrjagin, 1946, Theorem 45). Thus we have 
obtained that ~ is isomorphic to the generalised geometry of all finite 
dimensional linear manifolds of a linear space V over a division ring D 
which is one of R, C or Q. The statement of the theorem follows from 
Varadarajan (1968, Theorem 7.40). 

We have thus proved that if a projective logic 5r satisfies the conditions 
given at the beginning of the section, then ~ determines a division ring �9 
which is one of R, C or q.  

To go further on and establish an isomorphism with the projective logic 
of all the closed linear manifolds of a separable Hilbert space, the 0-bilinear 
form (. ,  .) must have the properties of an inner product. When so, V with 
the inner product (. ,  .) is complete, that is a Hilbert space (Varadaragan, 
1968, Theorem 7.42). 

Now if ~ is R, C or @, the 0-bilinear form (., .) is an inner product iff the 
antiautomorphism 0 is the identity, the complex conjugation or the canonical 
conjugation respectively. If • is N or Q the antiautomorphism 0 determined 
by s is the identity or the canonical conjugation respectively. If  D is C the 
antiautomorphism 0 is the complex conjugation iff it is continuous (see 
Varadarajan, 1968, p. 179). 

We can then arrive at the projective logic ~(3/f,  D) if we require that the 
antiautomorphism 0 is continuous. For what we have just said this is a 
restriction only in the case ~ = C. 

Therefore, if we take into account Theorems 4.1 and 5.1 and the results of 
Section 3 we can state the following theorem. 

Theorem 5.2. Let ~ be any logic. Then 

(1) if ~ is a projective logic with the properties: (a) every family of 
mutually orthogonal points of s is at most countable, (b) conditions 
(~1)-(~5) are satisfied, then ~ is isomorphic to the projective logic 
s of all linear manifolds closed relative to the 0-bilinear 
form {., .) ,  where Vis a linear space over N, C or Q; 
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(2) if, in addition, the antiautomorphism 0 is continuous, then V is a 
separable Hilbert space with (. ,.) as inner product. 

Conversely, if SO is isomorphic to SO(W, D) where ~ is a separable 
Hilbert space over D (~, C or Q) with dim Jg/> 4, then SO is a projective 
logic with the properties: (a) every family of mutually orthogonal points of  
SO is at most countable, (b) conditions (SOl)-(SOs) are satisfied, (c) the anti- 
automorphism 0 is continuous. 

As a conclusion, two remarks are in order. 
First, the continuity of  the antiautomorphism 0 of D followed by the 

general topological assumptions on SO could have been expected. We have 
not yet settled this question. 

Second, if in theorem 5.2 we want to cut out the possibility D = Q, we 
must require that in SO the 'Pappus property' holds. Conversely, if we want 
D = Q, we must require that the 'Pappus property' does not hold. Indeed, 
the validity of the 'Pappus property' is a necessary and sufficient condition 
for the commutativity of ~ (Artin, 1962, p. 73). 
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Appendix 
A. LATTICES 

(1) Definitions and notations 
A lattice is a poset (with the order relation denoted by ~<) in which for 

every pair of elements a, b there exists sup(a, b) and inf(a, b). 
A lattice SO is called a-complete if  sup{a~} and inf(a~} exists for every 

t 

countable set {at} of elements of SO; it is called complete if sup M and in fM 
exists for every subset M of SO. 

We use the notations a v b, a ^ b, V (at}, A {at}, V M and A M for 
i i 

sup (a, b), inf(a, b), sup(a~}, inf{a~}, sup M and infM respectively. 
i t 

If a lattice admits a greatest element and a least element (this is always 
the case for a complete lattice) we call them I and 0 respectively. 

A subset B of a lattice SO such that Va ~ 5r a # 0, ~ B(a~ c B [a = V Be, ~ 
is called a base of S ~ 

(2) Distributive, modular and weakly modular lattices 
A lattice is called distributive if 

( D . 1 ) a ^ ( b v c ) = ( a ^ b ) v ( a ^ c ) ,  Va, b,c~So; 
(D.2) a v (b ^ c) = (a v b) ^ (a v v), ga, b, c s SO; 

modular if 

( M ) a < b = ~ a v ( c A b ) = ( a v c ) A b ,  Vc ~SO; 
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weakly modular if 

(WM) a ~< b, c ~ # - ~ a v ( c A b ) = ( a v c ) A b .  
Obviously, (D.1) ~ (D.2), (D.2) ~ (M) and (M) ::> (WM). 

(3) Complemented and orthocomplemented lattice 

A lattice ~ with 0 and I is called complemented if for  every a ~ ~ there 
exists in A ~ at least an a '  such that  

a ^ a ' = 0 ,  a v a ' =  I 

An  or thocomplementa t ion in a lattice A ~ with 0 and I is a mapping _]: 
--> A ~ such that  

(1) a A a  •  Va~AV; 
(2) a v a J- = I, Va E Aa; 
(3) a ~< b :~ b -L < a • Va, b ~ A a ; 
(4) a l•  = a, Va ~ A ~ 

In  a given lattice Ae an or thocomplementat ion doesn ' t  need to exist and, 
if there is one, it doesn ' t  need to be the unique one. A lattice A v with 0 and I 
and with a given or thocomplementa t ion is called an orthocomplemented 
lattice. 

A complemented distributive lattice is usually called a Boolean lattice. 
In  a Boolean lattice the complement  a '  is unique for  every a, it is an ortho- 
complement  and the unique one. 

(4) Atomic lattices 

An element c o f  a lattice =~a with 0 is called an atom (or a point) of  A v if 
c 4 O and a-<< c :~ a = O  or a =  c. 

A lattice A a is called atomic if it has a base consisting o f  atoms (and 
therefore o f  all the a toms of  Av). 

(5) Topological lattices 

A topological lattice is a set Ae endowed with compatible lattice and 
topological structures, the compatibil i ty meaning that  V and A are continu- 
ous mapping  f rom ~ x Se (with the product  topology) in Av; if A a as a 
lattice is or thocomplemented,  the continuity o f  the or thocomplementat ion 
is also required. 

B. GEOMETRIES (Vanadarajan,  1968) 

(1) Dimension function 
Given a complemented lattice A ~ a dimension function on L,e is a mapping  

d: Ae ---> ~ such that  

(1) d(a) ~> 0, Va ~ ~ ,  d(0) = 0; 
(2) a <~ b, a 4 b ~ d(a) < d(b); 
(3) d(a v b) + d(a A b) = d(a) + d(b), Va, b E A a. 

A complemented lattice with a dimension function is modular  
(Varadarajan,  1968, Lemma 2.2). 
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We recall that a chain in a poset ~ is a subset of  ~ for which the induced 
ordering is a total ordering. The length of a chain is the number of  its ele- 
ments. A lattice 5r is said to have a finite length if there is an integer tc such 
that the length of any chain in s does not exceed ~c. The least upper bound 
of the lengths of ~ is called the length of s 

A complemented modular lattice s of  finite length is atomic and there 
exists a unique dimension function d on 5e such that d(c)  = 1 for every atom 
c of ~e (Varadarajan, 1968, Theorem 2.8). This dimension function is called 
canonical. 

(2) Geometr ies  

The centre of a complemented modular lattice ~ is the set of elements of  
s having a unique complement. I f  the centre is the set {0,I), 5r is called 
irreducible. 

A g e o m e t r y  is a complemented, modular, irreducible lattice of  finite 
length. 

In a geometry Za an element l will be called a line of s if l = p l v  P2, 
where Pl and Pz are two distinct points (atoms) of 5r an element u will be 
called a plane of 5e is u = l v p, where I is a line and p a point not lying (not 
contained) on l (a lies on b (a is contained in b) means a < b). 

Every line contains at least three distinct points (Varadarajan, 1968, 
Theorem 2.15). 

A plane u is said to be trivial if every line lying in u contains exactly three 
points. 

I f  we consider in a geometry .W the canonical dimension d we have 

d(a) = 1 ~ a is a point of  oW 

d(a) = 2 .~- a is a line of  5r 

d(a) = 3 <:> a is a plane of  s 

In this paper for the dimension function in a geometry 5e we shall always 
mean the canonical dimension function. We define the dimension of a 
geometry s as the canonical dimension of its geatest element and write 
d i m ~  for it (note that dims equals length of s minus 1). 

(3) Generalised geometr ies  

In a lattice oL a we denote by ~~  the set of elements b c oL~ ~ such that 
al <<. b <<. az with the induced order relation. 

A general ized  g e o m e t r y  is a lattice s with 0 such that for every 
a e ~e,a # 0: 5r is a geometry. 

Obviously if a generalised geometry has also I, it is a geometry. 
Since for every a e s a r 0, s is a geometry, we can introduce in s 

a dimension function simply defining d im(0)=  0, d im(a)=:  dimL, e[0,a]. 
This dimension function has the properties 

(1) dim(a) ~> 0, Va e s  dim(0) = 0; 
(2) a < b, a ~ b ~ dim (a) / dim (b): 
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(3) dim (a v b) + dim (a A b) = dim (a) + dim (b): 
(4) dim (a) = 1, a is a point  of  2". 

Again,  an element a o f  a generalised geometry 2" with dim(a) = 2 will be 
called a line o f  2" and an element a o f  2 '  with dim (a) = 3 a plane of  2". 

Let now al, a2 be two elements o f  a generalised geometry ~r and suppose 
that  

dim (a0  = dim (a2) = r > 0 

dim (al A a2) = r -- 1 

Then there exists at least one point  P < al v a2 lying neither on al nor  on a2; 
for  every such a point  P, P v al = P v a2 and the mapping  

t/:2"E0, all --~ 2"E0, a2], t/(b) =:  (x v b) A a2 

is an isomorphism of  2"[0, al] onto 2"[0, a2]; moreover,  t / (b)= b for every 
b ~< al ^ a2 (Varadarajan, 1968, Lemma 5.3). 

The mapping  r/is called a perspectivity of  al on a2 with centre P. Given two 
lines 11 and 12 in a plane u a projectivity of /1  onto 12 is a one-one  mapping 
f rom ll onto  12 which is a product  o f  perspectivities. 

C.  0-BILINEAR FORMS (Varadarajan,  1968) 

A n  ant iautomorphism 0 o f  a division ring ~ is an invertible mapping 
2 ~ 2 o o f  ~ onto itself such that  

(1) ( 2 + # ) 0 = 2 0 + #  0 , V ) , , # ~ ;  
(2) (2#) o = ~020, V2, # ~ ~ .  

Obviously, an ant iautomorphism of  K is an au tomorphism iff ~( is 
commutative.  

An  ant iautomorphism 0 o f  N is called involutive if (20) 0 = 2 V2 ~ ~(. 
I f  ~; is a division ring, 0 an ant iautomorphism of  ~4 and V a linear space 

over ~'~, a O-bilinearform on VxV is a mapping  ( . ,  . ) :  VxV ~ ~ such that 

[(xl  + x2, y )  = (xl ,  y )  + (x2, y ) ,  Vxa, x2, y ~ V 

(1) t (x ,  Yl + Y2) (xl ,  Yl) + (x, Yz), Vxl Yl, Y2 ~ V 

(2) (2x, py)  = 2 ( x , y ) p  ~ Vx ,y  ~ V, V2,# e N. 

A 0-bilinear form is called symmetric if 

(x,  y )  = (y, x )  ~ Vx, y e A 
non-singular if  

( x , y )  = 0 ,  V y ~ V  =~ x = 0  

( x , y )  0 V x ~ V  ~ y = 0  
definite if 

[ ( x , x ) = O  ~ x = 0  
t(z,  z )  = 1 for  some z e A 

"~ By a l inear space over K we unders tand ,  to be definite, a left l inear space over ~ .  
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A definite 0-bilinear form is obviously non-singular. 
For  every definite symmetric 0-bilinear form the antiautomorphism 0 is 

involutive. 

D. NETS (Pontrjagin, 1968) 

A directed set is a set A with a directing relation, that is with a binary 
relation < such that: 

(1) ~ < a ,  Voc ~ A; 
(2) ~, fl , ~ ~ A,  a < fl , fl <-< ]' => ~ < ~ ; 
(3) if ~,fl ~ A there is a 7 ~ A such that 7 >~ ~ and 7 ~> ft.? 

Given a family (A~}~ of directed sets the product  directed set 7r, A ,  is the 
cartesian product of  the sets A, (that is, the set of  all the functions co: ~ --~ 
U A, such that w(a) ~ A~ for every o- ~ 27) with the directing relation defined 

O" 

by: co ~< ~o' if a)(a)" < co'(o'), ~'a ~ 27. 
Given a set X, any mapping from any directed set to Xis called a net in X. 

For  a net in X we will use the notation {x,},~a or simply {x~}. 
Given two nets {x~},~a and {YR}a~B in X, the net {YB}B~B is called a subnet of 

the net {x~}~a if there exists a mappping zr: B -+ A such that 

(1) YB = x,~o), Vfl ~ B, 
(2) Vet s A there is a fit < B such that fl >~ fit =~ n(fl) >t ~o. 

Let now X be a topological space. A net {X,}~A in X is said to converge 
to an element x ~ X(in  symbols, x~ -+ X) if for every neighbourhood V o f x  
there exists an ~v ~ A such that e ~> ~v ~ x, ~ V. I f  x,  -+ 2,  X is called a 
limit of  {x~}~a. 

It  can be shown that a subset N of  X is closed in J(iff for every net {x~}~a 
in N all the limits of  {x~}~A belong to N and that a m a p p i n g f f r o m  X in a 
topological space Yin continuous at xo ~ Xi f f fo r  every net {x~} in Xwhich 
converges to Xo the net {f(x~)} converges to Xo. 

The above defined convergence of nets in a topological space X has the 
following properties: 

(nl) for each x ~ X; x~ = X V~ ~ A => x~ -> X; 
(n2) if x~ -+ X and {xa} is a subnet of {x~} then x e ~ X; 
(n3) if{x,} does not converge to x there exists a subnet of{x,} no subnet of  

which converges to x. 
(n4) (law of iterated limits) let A be a directed set, B, a directed set for 

each ~ e A and C the product directed set A x / / B ~ ;  if the net 
~t 

{x,},~A converges to x and if, for each fixed a ~ A, the net {x~.a}a~n~ 
converges to x,, then the net {x,.~r,)}(~.~)sc converges to x. 

Suppose now we have a set X and a family e of  pairs, each pair being 
formed by a net {x,} in X'and a point x ~ I". For  a pair ({x,}, x) belonging to e 
we say that {x~} e-converges to x. A family e is called a convergence class f o r  X 

I" I t  is immaterial for the theory of  nets whether or  not  it is assumed that ~ >~ ~' and 
~' ~> ~ imply ~ = ct'. 
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if it satisfies (nl)-(n4) (obviously, with e-convergence substituted for con- 
vergence). 

I t  is a fundamental result the fact that, given a set X and a convergence 
class e for X, a topology can be introduced in X the  convergence relative to 
which is equivalent to the e-convergence. One simply takes as the family 
of  closed sets the family of  the subsets S of X such that: if  {x~) c S and 
{x~} e-converges to x, then x ~ S. 

The topology introduced in X in this way is a T1 topology iff 

(7"1) for each x E X, x , - - x  ~'~ e A and {x,} e-converges to y imply 
x = y ;  

it is a T2 topology (Hausdorff  topology) iff 
(Tz) {x=} e-converges to x and {x,} e-converges to y imply x = y. 
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